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Abstract – The proposed low-power technique is used in 
hard real-time systems. It is based on Standby sparing 
technique. Besides, to validate technique, we have 
developed the multiprocessor system, consisting of two 
identical microcontroller cores. The system, maintains both 
the fault tolerance and low-power operation. 

1. INTRODUCTION 

 Energy management and power dissipation of complex 
System-on-chips (SoC) are key parts of design specifications. 
In the past, several power management techniques have been 
proposed. Among these, dynamic voltage and frequency 
scaling (DVFS), and power gating, became very popular and 
nowadays are widely applied in many electronic circuits and 
systems.  

 The DVFS technique reduces the supply voltage and 
leads to a quadratic reduction in dynamic energy 
consumption [1]. Because it is very efficient technique, the 
DVFS is used for power reduction of many commercial 
microprocessors. The other technique - the power gating, 
shuts down the power supply of currently inactive blocks and 
subsystems, reducing the leakage power in an efficient way 
[2].  

 In real-time systems, the techniques like time redundancy 
[3] and hardware redundancy [4] are commonly used to 
achieve the fault tolerance. The advantage of time 
redundancy is that it requires less hardware as compared to 
hardware redundancy. However, the time redundancy may 
not be able to accomplish the required consistency of hard 
real-time systems that are used in safety-critical applications. 
To achieve high reliability of these systems, the use of 
hardware redundancy is a obligation [4]. However, the 
utilization of low power techniques, and especially, low 
voltage operation, has a negative influence on system's 
reliability and fault tolerance. It was found that utilization of 
DVFS exponentially increases the existence of transient 
faults during microprocessor’s operation [5]. 

 The proposed low-power technique is intended to be used 
in hard real-time systems. It represents the modification of 
Standby sparing technique [6], one of the techniques which 
are based on hardware redundancy. The low-power fault-
tolerant methodology is described in the next section. For the 
utilization in hard real-time applications, we have developed 
the multiprocessor system, consisting of two identical 8052 
microcontroller cores. The system, which is described in 
section three, maintains both the fault tolerance and low-
power operation. 

2. THE STANDBY SPARING METHODOLOGY 

 The low-power technique dedicated to real-time 
applications is explained on the example of group of tasks, 

labeled with T1, T2, and T3 (as shown in Fig.1). Each task Ti 
(i=1,2,3) is characterized by worst case time interval 

WCETi. Each task Ti is executed by microcontroller core, 
called the primary core. The task is executed within the time 

interval named with actual execution time - AETi, which is 

less or equal than WCETi. All the tasks should be completed 
before the specified deadline time D (Fig.1). 

 

Fig.1. The schedule of tasks  

 The microcontroller core executes the tasks and can 

operate at the frequency maximum fmax, obtained at voltage 

level Vmax. Beside Vmax, several other lower supply voltages 
and operating frequency values are at the disposal. 

 The reduction of power consumption is one of the design 
priorities and microcontroller should spend the minimum 
energy for a task execution. By using the DVFS, the power 
consumption of primary core is efficiently reduced. The 

supply voltage is decreased to minimum value Vreduced which 

is two times less than Vmax. Also, the primary core executes 

the instructions at frequency freduced which is operating 

frequency maximum at Vreduced. The frequency value fmax is 

two times greater than freduced. 

 In real-time systems the safe operation is required and 
microcontroller system should operate properly in the event 
of the transient fault. The fault tolerance is provided by 
exploiting the Standby sparing technique, which is described 
as follows. 

 

 In Standby sparing technique [6], the hardware 
redundancy relies on the utilization of one additional 
microcontroller core – called spare core, which is identical to 
the primary core. The spare core can execute the same 
sequence of tasks as primary core, and operates in standby 
mode most of the time. If a transient fault is detected, the 
primary core switches on the spare unit, which after, 
executes the back-up task.  

 

To meet the deadline time, the spare core is often turned 
on before the primary unit finishes its operation and possible 
faults are checked. Therefore, the back-up task, executed by 
spare unit, is started before the primary task has been 
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completed. This is the main characteristic of Standby 
sparing technique. The fault tolerance is provided by using 
the standby time of the spare unit. If primary core finishes 
the task without an error, spare cancels further operation, 
because it not needed anymore, and returns immediately to 
standby mode. If primary core fails executing the task, the 
back-up task is completed by spare unit. 

 The power consumption of primary microcontroller is 

reduced by decreasing the supply voltage to Vreduced. The 
other core, the spare unit, resides often in standby mode and 
utilizes only power gating for energy efficiency. Because the 
number of faults exponentially increases with decreasing of 
supply voltage level, only high supply voltage level of spare 
unit conserves the fault tolerance [5]. Consequently, the 
spare unit operates at maximum of the both frequency and 

supply voltage levels - fmax and Vmax. These are two times 
greater than the levels in the primary unit.  

 

Fig.2. The task execution performed by primary and spare 
cores, proposed by standby sparing technique 

 The Fig.2 shows the execution of tasks Ti and Ti+1, 
performed by primary and spare units. The primary unit 

finishes the task within the time interval AETi. The spare 

unit, working at fmax, starts the execution after delay di and 

finishes after the time interval AETi/2. During the delay 

time di the spare unit is in standby, and thus, saves the 
energy.  

 At the moment when primary core finishes the task Ti, 

the operation of task Ti is checked. The error detection is 
usually assumed to be part of the software and error 
detection overhead is considered as a part of the execution 

time [7]. If error is not found, the task Ti finishes 
successfully. The execution of spare task is cancelled, and 
spare immediately goes from active to standby mode. If 

primary core fails, the next task Ti+1 can be started after the 

spare unit completes the backup task Ti. 

 The power consumption of spare unit is approximately 
eight times greater than in the primary unit (voltage and 
frequency levels are two times greater). To reduce the total 
power dissipation, the time interval during which the spare 
stays in Active mode should be minimized. To reduce the 

time interval, the delay time di should be increased. 

However, delay time di cannot be increased arbitrarily, 
because total delay times of all tasks is limited by the 
deadline time D.  

 The inter-task time ri is the delay between two 

consecutive tasks Ti and Ti+1, and can be determined by 
Eq.1: 

 2/iAETidir                                                   (1) 

where delay di has range: 
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 If primary unit completes the task, the energy 
consumption of spare depends on the duration of spare active 

time interval ai, given by Eq.3. 
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 The previous equation can be modified as follows: 
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 The slack time SLT represents the maximum value of 
sum of all inter-task times, and it is equal to the difference of 
deadline time D and the sum of all actual execution times 
(Eq.5). 
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 The spare unit active time A, which contributes the most 
of total power consumption is: 
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 The spare active time minimum is: 
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 It can be concluded that if the sum of all actual execution 
times is less or equal than two thirds of deadline time D, 
there is no need for spare unit to operate. The spare active 
time is then equal to zero. Moreover, it can be found from 
Eq.4 that the sum of the inter-task time and spare active time 

is equal to the value AETi/2. To reduce the spare power for 

particular task Ti, the value ai should be reduced and ri 
increased. To meet the deadline time D, there is a need to 
have enough time to finish all the tasks, but, slack time SLT 

limits the increase of ri.  

 In the hard real time systems the deadline time is close to 
the sum of actual execution times. The power consumption 
of spare unit can be large and unacceptable, even greater of 
the consumption of primary unit. To reduce the power 
consumption of spare unit, the tradeoff between the fault 
tolerance and spare core power consumption is made, which 
is described as follows.  

 The operation is slightly modified compared to previous 
description. Consider the execution of two successive tasks 

Ti and Ti+1 (Fig.3). Now, there is not any inter-task period 

between Ti and Ti+1, neither for primary nor for the spare 



units. Immediately after a unit finishes task Ti, it begins the 

execution of the next task Ti+1.  

 Similar to previous description, the primary unit, 

operates at freduced, and finishes the task within the time 

interval AETi. The spare unit, working at fmax, starts the 

execution after delay di and finishes after the time interval 

equal to AETi/2. 

 

Fig.3. The operation which doesn't utilize inter-task time 

periods; case 1: AETi/2 > AETi+1 

 Whenever the task Ti is finished successfully, the back-
up task Ti is cancelled. The Ti+1 is started immediately on 
the primary unit. At the moment when primary core finishes 
the Ti+1, the operation of Ti+1 is checked. If Ti+1 is finished 
successfully, the back-up task Ti+1 is stopped. 

 If a fault occurs on the primary unit during Ti, the 
execution of back-up task Ti is continued. The execution of 

task Ti+1 on primary unit should be cancelled, because it 
would make calculations without the valid outcome from 
previous task Ti. When the spare unit finishes back-up task 

Ti, it starts Ti+1. The Ti+1 is executed at Vmax. In this 

situation the fault tolerance of task Ti+1 is lost. Therefore, the 
power consumption of spare unit is reduced in exchange for 
the slightly losing the fault tolerance of task Ti+1.  

 Consider first the relation between periods AETi. and 

AETi+1, which is given by Eq.8. The relation is illustrated in 
Fig.3. 
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 In the case when spare unit executes only the part of task 
Ti, the sum of inter-task times and spare active times of 

tasks Ti and Ti+1 is equal to: 
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 When the spare unit executes the parts of both tasks, the 

sum of inter-task times and spare active times of tasks Ti 
and Ti+1 is given by Eq.10: 
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Fig.4. The operation which doesn't utilize inter-task time 
periods; case2: AETi/2 < AETi+1< AETi 

 The situation when AETi/2 < AETi+1< AETi is shown in 
Fig.4. 
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 If spare unit executes only task Ti+1, the sum of inter-

task times and spare active times of tasks Ti and Ti+1, is 
equal to: 
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 When the spare unit executes the parts of both tasks, the 
sum is given by Eq.13: 
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Fig.5. The operation which doesn't utilize inter-task time 
periods; case 3: AETi+1> AETi 

 The third situation, given in Fig.5, is expressed by 
condition AETi+1>AETi. The sum of inter-task times and 

spare active times of tasks Ti and Ti+1, is provided by Eq.15. 

  1 ii AETAET                                                (14) 



 

]2,0[

   ,2)(

11

1
1 ,










ii

i
iij

jj

AETr

AETar
                                  (15) 

 The described operation decreases the sum of inter-task 
times and spare active times for tasks Ti and Ti+1. In the first 
case, which is shown in Fig.3, the total sum of inter-task 
times and spare active times of all tasks is reduced by value 
AETi+1. It other two cases (Figures 4 and 5), the reduction is 

equal to AETi/2. The power consumption of spare unit is 

reduced when spare active time interval ai is decreased. 

 The described operation is repeated until the sum of all 
inter-task times and spare active times becomes equal or less 
than slack time SLT. Further reduction would not yield the 
spare unit energy efficiency. 

3. RESULTS 

 To validate proposed technique, an implementation of 
8052 microcontroller core was used. The microcontroller 
was implemented in the Laboratory for Electronic Design 
Automation and represents one of the blocks of Integrated 
Power Meter SoC designed in the same laboratory [8]. 

 The structure of proposed microcontroller block consists 
of core, memory blocks, and peripheral units. The 
peripherals are comprised of: three digital input/output 
parallel ports, liquid crystal display driver control circuit and 
several communication modules - two asynchronous 
universal receiver/transmitter blocks and one serial interface. 
Also, three timer/counter circuits are present.  

 The memory organization is similar to that of the 
industry standard 8052. Three main memory areas 
associated with the proposed microcontroller are: program 
memory (on-chip 8kB SRAM block), external data memory 
XRAM (physically consisting of on-chip 2kB SRAM block 
and I/O RAM block made of standard cells), and internal 
data memory IRAM (comprising of 256 Internal Dual port 
RAM and Special Function Register block). 

 To reduce the leakage power, the design was divided into 
three power domain areas and MTCMOS switches [2] were 
inserted into each power domain. MCU core, the peripherals 
and memories were embedded in distinct power domains – 
called CORE, PER and MEM respectively.  

 The microcontroller is provided with a few low-power 
operation modes so that user can choose the most 
appropriate for particular application. These modes switch 
off the power supply in the inactive microcontroller parts, 
significantly reducing the leakage current. The Power 
management unit is the part which is responsible for 
changing the power saving modes. Beside Active operating 
mode, microcontroller offers Standby mode. In Standby the 
core is switched off from the power supply, and the 
peripheral units and memories are kept powered. 

 The microcontroller was implemented using 90nm 
technology library and Synopsys EDA tool suite [9]. 

 The novel design of microcontroller system was created 
which incorporates two identical 8052 cores, called the 
primary and spare cores. The primary and spare cores were 
implemented in different power domains areas with separate 
power supply lines. Since the spare core executes the same 
program code as primary unit, it shares with primary core 
RAM memory blocks, which are used for program and 
external data storing. The RAM memories represent the 

largest microcontroller blocks and their area is three times 
larger than the area of single microcontroller core [8]. 
Therefore, from area-efficiency point of view, the additional 
microcontroller core does not increase significantly the total 
chip occupied area. 

 The power consumption of primary core is reduced by 
decreasing the supply voltage to Vreduced=0.6V and frequency 
freduced =60MHz. Besides, the spare core utilizes power gating 
for energy reduction. The spare core operates at nominal 
supply voltage Vmax=1.1V and executes the instructions at 

the maximum clock frequency fmax=120MHz. 

 The power management unit was modified to support the 
operation of spare core. Also, the primary core was changed 
to enable toggling on and off the spare core. 

 The power estimation for the implemented 
microcontroller system is based on the information about 
static and dynamic power consumption of digital standard 
cells provided by the Synopsys 90nm technology files. These 
files were used during the synthesis process and after, during 
the placement and routing phases. The power consumption 
was obtained after layout implementation, and logical 
verification of the final layout netlist. The switching activity 
of the nets was recorded during logical verification for 
dynamic power estimation. 

 The Fig. 6 illustrates an example of schedule consisting 
of four tasks which is used for estimation of power 
consumption. 

 

Fig.6. The example: a schedule of tasks used for power 
estimation  

 By using the Eq.4, the sum of the all inter-task periods 
and spare active times is calculated for task schedule which 
doesn't use the power reduction methodology. The sum is 
given by Eq.16. 
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 During schedule optimization process, the pairs of tasks 
T1, T2, and T3, T4 are concatenated. The sum of inter-task 
periods and spare active times is equal to the new value, 
given by Eq.17. The equations 9 and 15 are used in the 
calculation. 
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 The slack time SLT is equal to: 
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 The spare unit active time A, which contributes the most 
of energy consumption, is given by Eq. 19 and 20, for not-
optimized and optimized design respectively. 
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 The relevant power consumption values are given in the 
Table 1. 

Table 1. The power optimization results  

before optimization 
 

Task 
AETi 

[ms] 
ai 

[ms] 
Energy of 

primary core 
[J] 

Energy of 
spare core 

[J] 
T1 20 6 26.58 58.8 

T2 8 2 10.632 19.6 

T3 12 4 15.948 39.2 

T4 16 4 21.264 39.2 

Sum 56 16 74.424 156.8 

after optimization 
 

Task 
AETi 

[ms] 
ai 

[ms] 
Energy of 

primary core 
[J] 

Energy of 
spare core 

[J] 
T1 20 1 26.58 9.8 

T2 8 0 10.632 0 

T3 12 0 15.948 0 

T4 16 1 21.264 9.8 

Sum 56 2 74.424 19.6 

 

 In the example (Fig.6), before the tasks were 
concatenated, the energy consumption of microcontroller 
system was 231.224J. When proposed techniques were 
applied, the total energy was 94.024J; in other words, a 
59.3% energy reduction compared to the non-optimized 
implementation. The energy of spare unit was reduced from 
156.8J to 19.6J. 

 

 

4. CONCLUSION 

 In this paper, the modification of standby sparing 
technique is proposed, in which the tradeoff between the 

fault tolerance and energy consumption is made. The 
technique relies on hardware redundancy and utilizes low 
power techniques: dynamic voltage scaling and power 
gating.  

 To validate the technique, the hard real time system was 
created, which incorporates two identical microcontroller 
cores. The first microprocessor core is called the primary 
unit and operates at lower voltage, reducing the power 
consumption. The other microcontroller core, called spare 
unit, exploits power gating to conserve the power and 
ensures the fault tolerant operation. The spare unit operates 
at higher voltage, but is most of the time inactive, reducing 
the total energy consumption.  

 The system is implemented in Synopsys 90nm 
technology. The main objective, which was to realize power 
efficient fault tolerant design, was fully reached. 
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