

ENERGY EFFICIENCY OF HARD REAL-TIME SYSTEMS BASED ON STANDBY SPARING

Borisav Jovanović, Milunka Damnjanović, University of Niš, Faculty of Electronic Engineering
 {borisav.jovanovic, milunka.damnjanovic}@elfak.ni.ac.rs

Abstract – The proposed low-power technique is used in
hard real-time systems. It is based on Standby sparing
technique. Besides, to validate technique, we have
developed the multiprocessor system, consisting of two
identical microcontroller cores. The system, maintains both
the fault tolerance and low-power operation.

1. INTRODUCTION

 Energy management and power dissipation of complex
System-on-chips (SoC) are key parts of design specifications.
In the past, several power management techniques have been
proposed. Among these, dynamic voltage and frequency
scaling (DVFS), and power gating, became very popular and
nowadays are widely applied in many electronic circuits and
systems.

 The DVFS technique reduces the supply voltage and
leads to a quadratic reduction in dynamic energy
consumption [1]. Because it is very efficient technique, the
DVFS is used for power reduction of many commercial
microprocessors. The other technique - the power gating,
shuts down the power supply of currently inactive blocks and
subsystems, reducing the leakage power in an efficient way
[2].

 In real-time systems, the techniques like time redundancy
[3] and hardware redundancy [4] are commonly used to
achieve the fault tolerance. The advantage of time
redundancy is that it requires less hardware as compared to
hardware redundancy. However, the time redundancy may
not be able to accomplish the required consistency of hard
real-time systems that are used in safety-critical applications.
To achieve high reliability of these systems, the use of
hardware redundancy is a obligation [4]. However, the
utilization of low power techniques, and especially, low
voltage operation, has a negative influence on system's
reliability and fault tolerance. It was found that utilization of
DVFS exponentially increases the existence of transient
faults during microprocessor’s operation [5].

 The proposed low-power technique is intended to be used
in hard real-time systems. It represents the modification of
Standby sparing technique [6], one of the techniques which
are based on hardware redundancy. The low-power fault-
tolerant methodology is described in the next section. For the
utilization in hard real-time applications, we have developed
the multiprocessor system, consisting of two identical 8052
microcontroller cores. The system, which is described in
section three, maintains both the fault tolerance and low-
power operation.

2. THE STANDBY SPARING METHODOLOGY

 The low-power technique dedicated to real-time
applications is explained on the example of group of tasks,

labeled with T1, T2, and T3 (as shown in Fig.1). Each task Ti
(i=1,2,3) is characterized by worst case time interval

WCETi. Each task Ti is executed by microcontroller core,
called the primary core. The task is executed within the time

interval named with actual execution time - AETi, which is

less or equal than WCETi. All the tasks should be completed
before the specified deadline time D (Fig.1).

Fig.1. The schedule of tasks

 The microcontroller core executes the tasks and can

operate at the frequency maximum fmax, obtained at voltage

level Vmax. Beside Vmax, several other lower supply voltages
and operating frequency values are at the disposal.

 The reduction of power consumption is one of the design
priorities and microcontroller should spend the minimum
energy for a task execution. By using the DVFS, the power
consumption of primary core is efficiently reduced. The

supply voltage is decreased to minimum value Vreduced which

is two times less than Vmax. Also, the primary core executes

the instructions at frequency freduced which is operating

frequency maximum at Vreduced. The frequency value fmax is

two times greater than freduced.

 In real-time systems the safe operation is required and
microcontroller system should operate properly in the event
of the transient fault. The fault tolerance is provided by
exploiting the Standby sparing technique, which is described
as follows.

 In Standby sparing technique [6], the hardware
redundancy relies on the utilization of one additional
microcontroller core – called spare core, which is identical to
the primary core. The spare core can execute the same
sequence of tasks as primary core, and operates in standby
mode most of the time. If a transient fault is detected, the
primary core switches on the spare unit, which after,
executes the back-up task.

To meet the deadline time, the spare core is often turned
on before the primary unit finishes its operation and possible
faults are checked. Therefore, the back-up task, executed by
spare unit, is started before the primary task has been

Zbornik radova 56. Konferencije za ETRAN, Zlatibor, 11-14. juna 2012.
Proc. 56th ETRAN Conference, Zlatibor, June 11-14, 2012

EL2.2-1-5

completed. This is the main characteristic of Standby
sparing technique. The fault tolerance is provided by using
the standby time of the spare unit. If primary core finishes
the task without an error, spare cancels further operation,
because it not needed anymore, and returns immediately to
standby mode. If primary core fails executing the task, the
back-up task is completed by spare unit.

 The power consumption of primary microcontroller is

reduced by decreasing the supply voltage to Vreduced. The
other core, the spare unit, resides often in standby mode and
utilizes only power gating for energy efficiency. Because the
number of faults exponentially increases with decreasing of
supply voltage level, only high supply voltage level of spare
unit conserves the fault tolerance [5]. Consequently, the
spare unit operates at maximum of the both frequency and

supply voltage levels - fmax and Vmax. These are two times
greater than the levels in the primary unit.

Fig.2. The task execution performed by primary and spare
cores, proposed by standby sparing technique

 The Fig.2 shows the execution of tasks Ti and Ti+1,
performed by primary and spare units. The primary unit

finishes the task within the time interval AETi. The spare

unit, working at fmax, starts the execution after delay di and

finishes after the time interval AETi/2. During the delay

time di the spare unit is in standby, and thus, saves the
energy.

 At the moment when primary core finishes the task Ti,

the operation of task Ti is checked. The error detection is
usually assumed to be part of the software and error
detection overhead is considered as a part of the execution

time [7]. If error is not found, the task Ti finishes
successfully. The execution of spare task is cancelled, and
spare immediately goes from active to standby mode. If

primary core fails, the next task Ti+1 can be started after the

spare unit completes the backup task Ti.

 The power consumption of spare unit is approximately
eight times greater than in the primary unit (voltage and
frequency levels are two times greater). To reduce the total
power dissipation, the time interval during which the spare
stays in Active mode should be minimized. To reduce the

time interval, the delay time di should be increased.

However, delay time di cannot be increased arbitrarily,
because total delay times of all tasks is limited by the
deadline time D.

 The inter-task time ri is the delay between two

consecutive tasks Ti and Ti+1, and can be determined by
Eq.1:

 2/iAETidir  (1)

where delay di has range:

],
2

[iAET
iAET

id  (2)

 If primary unit completes the task, the energy
consumption of spare depends on the duration of spare active

time interval ai, given by Eq.3.

 iii
i

i dAETr
AET

a 
2

 (3)

 The previous equation can be modified as follows:

2

i
ii

AET
ra  (4)

 The slack time SLT represents the maximum value of
sum of all inter-task times, and it is equal to the difference of
deadline time D and the sum of all actual execution times
(Eq.5).

 







N

i
iATED

N

i
irSLT

11
max)((5)

 The spare unit active time A, which contributes the most
of total power consumption is:

 











N

i
ir

N

i

iAET
N

i
iaA

11
2

1

 (6)

 The spare active time minimum is:

D
N

i
iAETA

D
N

i
iAETD

N

i
iAETA

3

2

1

 ,0

3

2

1

 ,

1
2

3
min)(




















 (7)

 It can be concluded that if the sum of all actual execution
times is less or equal than two thirds of deadline time D,
there is no need for spare unit to operate. The spare active
time is then equal to zero. Moreover, it can be found from
Eq.4 that the sum of the inter-task time and spare active time

is equal to the value AETi/2. To reduce the spare power for

particular task Ti, the value ai should be reduced and ri
increased. To meet the deadline time D, there is a need to
have enough time to finish all the tasks, but, slack time SLT

limits the increase of ri.

 In the hard real time systems the deadline time is close to
the sum of actual execution times. The power consumption
of spare unit can be large and unacceptable, even greater of
the consumption of primary unit. To reduce the power
consumption of spare unit, the tradeoff between the fault
tolerance and spare core power consumption is made, which
is described as follows.

 The operation is slightly modified compared to previous
description. Consider the execution of two successive tasks

Ti and Ti+1 (Fig.3). Now, there is not any inter-task period

between Ti and Ti+1, neither for primary nor for the spare

units. Immediately after a unit finishes task Ti, it begins the

execution of the next task Ti+1.

 Similar to previous description, the primary unit,

operates at freduced, and finishes the task within the time

interval AETi. The spare unit, working at fmax, starts the

execution after delay di and finishes after the time interval

equal to AETi/2.

Fig.3. The operation which doesn't utilize inter-task time

periods; case 1: AETi/2 > AETi+1

 Whenever the task Ti is finished successfully, the back-
up task Ti is cancelled. The Ti+1 is started immediately on
the primary unit. At the moment when primary core finishes
the Ti+1, the operation of Ti+1 is checked. If Ti+1 is finished
successfully, the back-up task Ti+1 is stopped.

 If a fault occurs on the primary unit during Ti, the
execution of back-up task Ti is continued. The execution of

task Ti+1 on primary unit should be cancelled, because it
would make calculations without the valid outcome from
previous task Ti. When the spare unit finishes back-up task

Ti, it starts Ti+1. The Ti+1 is executed at Vmax. In this

situation the fault tolerance of task Ti+1 is lost. Therefore, the
power consumption of spare unit is reduced in exchange for
the slightly losing the fault tolerance of task Ti+1.

 Consider first the relation between periods AETi. and

AETi+1, which is given by Eq.8. The relation is illustrated in
Fig.3.

2

1 i
i AET

AET
 (8)

 In the case when spare unit executes only the part of task
Ti, the sum of inter-task times and spare active times of

tasks Ti and Ti+1 is equal to:

]2)(,2[

 ,2)()(

111

1
1 ,










iiii

ii
iij

jj

AETAETAETr

AETAETar
 (9)

 When the spare unit executes the parts of both tasks, the

sum of inter-task times and spare active times of tasks Ti
and Ti+1 is given by Eq.10:

]2,0[

 ,2)(

11

1
1 ,










ii

ii
iij

jj

AETr

rAETar
 (10)

Fig.4. The operation which doesn't utilize inter-task time
periods; case2: AETi/2 < AETi+1< AETi

 The situation when AETi/2 < AETi+1< AETi is shown in
Fig.4.

2

1 ii
i AETAET

AET
  (11)

 If spare unit executes only task Ti+1, the sum of inter-

task times and spare active times of tasks Ti and Ti+1, is
equal to:

]21,2)1([1

 ,21

1 ,

)(









iAETiAETiAETir

iAET

iij

jajr

 (12)

 When the spare unit executes the parts of both tasks, the
sum is given by Eq.13:

]2)(,0[

 ,2)(

11

1
1 ,










iii

ii
iij

jj

AETAETr

rAETar
 (13)

Fig.5. The operation which doesn't utilize inter-task time
periods; case 3: AETi+1> AETi

 The third situation, given in Fig.5, is expressed by
condition AETi+1>AETi. The sum of inter-task times and

spare active times of tasks Ti and Ti+1, is provided by Eq.15.

 1 ii AETAET (14)

]2,0[

 ,2)(

11

1
1 ,










ii

i
iij

jj

AETr

AETar
 (15)

 The described operation decreases the sum of inter-task
times and spare active times for tasks Ti and Ti+1. In the first
case, which is shown in Fig.3, the total sum of inter-task
times and spare active times of all tasks is reduced by value
AETi+1. It other two cases (Figures 4 and 5), the reduction is

equal to AETi/2. The power consumption of spare unit is

reduced when spare active time interval ai is decreased.

 The described operation is repeated until the sum of all
inter-task times and spare active times becomes equal or less
than slack time SLT. Further reduction would not yield the
spare unit energy efficiency.

3. RESULTS

 To validate proposed technique, an implementation of
8052 microcontroller core was used. The microcontroller
was implemented in the Laboratory for Electronic Design
Automation and represents one of the blocks of Integrated
Power Meter SoC designed in the same laboratory [8].

 The structure of proposed microcontroller block consists
of core, memory blocks, and peripheral units. The
peripherals are comprised of: three digital input/output
parallel ports, liquid crystal display driver control circuit and
several communication modules - two asynchronous
universal receiver/transmitter blocks and one serial interface.
Also, three timer/counter circuits are present.

 The memory organization is similar to that of the
industry standard 8052. Three main memory areas
associated with the proposed microcontroller are: program
memory (on-chip 8kB SRAM block), external data memory
XRAM (physically consisting of on-chip 2kB SRAM block
and I/O RAM block made of standard cells), and internal
data memory IRAM (comprising of 256 Internal Dual port
RAM and Special Function Register block).

 To reduce the leakage power, the design was divided into
three power domain areas and MTCMOS switches [2] were
inserted into each power domain. MCU core, the peripherals
and memories were embedded in distinct power domains –
called CORE, PER and MEM respectively.

 The microcontroller is provided with a few low-power
operation modes so that user can choose the most
appropriate for particular application. These modes switch
off the power supply in the inactive microcontroller parts,
significantly reducing the leakage current. The Power
management unit is the part which is responsible for
changing the power saving modes. Beside Active operating
mode, microcontroller offers Standby mode. In Standby the
core is switched off from the power supply, and the
peripheral units and memories are kept powered.

 The microcontroller was implemented using 90nm
technology library and Synopsys EDA tool suite [9].

 The novel design of microcontroller system was created
which incorporates two identical 8052 cores, called the
primary and spare cores. The primary and spare cores were
implemented in different power domains areas with separate
power supply lines. Since the spare core executes the same
program code as primary unit, it shares with primary core
RAM memory blocks, which are used for program and
external data storing. The RAM memories represent the

largest microcontroller blocks and their area is three times
larger than the area of single microcontroller core [8].
Therefore, from area-efficiency point of view, the additional
microcontroller core does not increase significantly the total
chip occupied area.

 The power consumption of primary core is reduced by
decreasing the supply voltage to Vreduced=0.6V and frequency
freduced =60MHz. Besides, the spare core utilizes power gating
for energy reduction. The spare core operates at nominal
supply voltage Vmax=1.1V and executes the instructions at

the maximum clock frequency fmax=120MHz.

 The power management unit was modified to support the
operation of spare core. Also, the primary core was changed
to enable toggling on and off the spare core.

 The power estimation for the implemented
microcontroller system is based on the information about
static and dynamic power consumption of digital standard
cells provided by the Synopsys 90nm technology files. These
files were used during the synthesis process and after, during
the placement and routing phases. The power consumption
was obtained after layout implementation, and logical
verification of the final layout netlist. The switching activity
of the nets was recorded during logical verification for
dynamic power estimation.

 The Fig. 6 illustrates an example of schedule consisting
of four tasks which is used for estimation of power
consumption.

Fig.6. The example: a schedule of tasks used for power
estimation

 By using the Eq.4, the sum of the all inter-task periods
and spare active times is calculated for task schedule which
doesn't use the power reduction methodology. The sum is
given by Eq.16.

 28
2

1612820
4

1
2

1
4

1

)(










 
j

jAET

j
jajr (16)

 During schedule optimization process, the pairs of tasks
T1, T2, and T3, T4 are concatenated. The sum of inter-task
periods and spare active times is equal to the new value,
given by Eq.17. The equations 9 and 15 are used in the
calculation.

 14
2

4
2

21
4

1

)''(







AETAETAET

j
jajr (17)

 The slack time SLT is equal to:

 125668

4

1

4

1









j

jAETD

j
jr (18)

 The spare unit active time A, which contributes the most
of energy consumption, is given by Eq. 19 and 20, for not-
optimized and optimized design respectively.

 16

4

1





j

ja (19)

 2'

4

1





j

ja (20)

 The relevant power consumption values are given in the
Table 1.

Table 1. The power optimization results

before optimization

Task
AETi

[ms]
ai

[ms]
Energy of

primary core
[J]

Energy of
spare core

[J]
T1 20 6 26.58 58.8

T2 8 2 10.632 19.6

T3 12 4 15.948 39.2

T4 16 4 21.264 39.2

Sum 56 16 74.424 156.8

after optimization

Task
AETi

[ms]
ai

[ms]
Energy of

primary core
[J]

Energy of
spare core

[J]
T1 20 1 26.58 9.8

T2 8 0 10.632 0

T3 12 0 15.948 0

T4 16 1 21.264 9.8

Sum 56 2 74.424 19.6

 In the example (Fig.6), before the tasks were
concatenated, the energy consumption of microcontroller
system was 231.224J. When proposed techniques were
applied, the total energy was 94.024J; in other words, a
59.3% energy reduction compared to the non-optimized
implementation. The energy of spare unit was reduced from
156.8J to 19.6J.

4. CONCLUSION

 In this paper, the modification of standby sparing
technique is proposed, in which the tradeoff between the

fault tolerance and energy consumption is made. The
technique relies on hardware redundancy and utilizes low
power techniques: dynamic voltage scaling and power
gating.

 To validate the technique, the hard real time system was
created, which incorporates two identical microcontroller
cores. The first microprocessor core is called the primary
unit and operates at lower voltage, reducing the power
consumption. The other microcontroller core, called spare
unit, exploits power gating to conserve the power and
ensures the fault tolerant operation. The spare unit operates
at higher voltage, but is most of the time inactive, reducing
the total energy consumption.

 The system is implemented in Synopsys 90nm
technology. The main objective, which was to realize power
efficient fault tolerant design, was fully reached.

ACKNOWLEDGEMENT

 Results presented in this paper are part of achievements
obtained within the project TR 32004 funded by the Serbian
Ministry of Science and Technology Development.

REFERENCES

[1] M. Keating, D. Flynn, R. Aitken, A. Gibbons, K. Shi,
Low Power Methodology Manual, Springer, 2007.

[2] P. Bipul, A. Agarwal, K. Roy “Low-Power Design
Techniques for Scaled Technologies,” Integration, The
VLSI Journal, Vol. 39, Issue 2 (2006), pp. 64–89

[3] H. Kopetz, Real-time systems: Design principles for
distributed applications, Kluwer Academic Publishers,
2002

[4] S. Poledna, Fault tolerant real-time systems: The
problem of replica determinism, Kluwer Academic
Publishers, 1996

[5] A. Ejlali, B. M. Al-Hashimi M. T. Schmitz P.
Rosinger, S. G. Miremadi, “Combined Time and
Information Redundancy for SEU -Tolerance in
Energy Efficient Real-Time Systems,” IEEE Trans.
VLSI Systems, Vol.14 no.4 pp.323-335, April 2006.

[6] D.K. Pradhan, Fault tolerant computer system design,
Prentice Hall, 1996

[7] P. Eles, V. Izosimov, P. Pop, Z. Peng “Synthesis of
FaultTolerant Real-Time Systems” in Proc. Design,
Automation and Test in Europe (DATE 2008), pp.
1117-1122, 2008

[8] B. Jovanović, M. Zwolinski, M. Damnjanović, “Low
power digital design in Integrated Power Meter IC,” in
Proc. of the Small Systems Simulation Symposium
2010, Niš, Serbia

[9] Synopsys 90nm Generic Library for Teaching IC
Design, http://www.synopsys.com, accessed April
2010

